Search
Check Out Our Sponsors
Latest topics
Inhibition of GSK-3 enhances the expression of alkaline phosphatase and insulin-like growth factor-1
Page 1 of 1
Inhibition of GSK-3 enhances the expression of alkaline phosphatase and insulin-like growth factor-1
Arch Dermatol Res. 2009 Feb 24.
Inhibition of glycogen synthase kinase-3 enhances the expression of alkaline phosphatase and insulin-like growth factor-1 in human primary dermal papilla cell culture and maintains mouse hair bulbs in organ culture.
Yamauchi K, Kurosaka A.
Hair Clinic Reve-21 Corporation, 2-1-61 Shiromi, Chuo-ku, Osaka, 540-6122, Japan.
Dermal papilla (DP) at the hair follicle base is important for hair growth. Recent studies demonstrated that mouse vibrissa DP cells can be cultured in the presence of fibroblast growth factor-2 (FGF-2), but lose expression of versican and their follicle-inducing activity during the culture, and that activation of the Wnt signal, which is inhibited by glycogen synthase kinase-3 (GSK-3), in the DP cells promotes hair growth activity. We therefore investigated the influence of a GSK-3 inhibitor, (2'Z,3'E)-6-bromoindirubin-3'-oxime (BIO), on the growth of human DP cells and mouse vibrissa follicles in culture. We first demonstrated that, similarly to mouse DP cells, human DP cells were able to be cultured up to 15 passages in the presence of FGF-2, and lost the expression of alkaline phosphatase (ALP). When human DP cells later than ten passages were treated with BIO, the expression of ALP as well as insulin-like growth factor-1 (IGF-1), another DP marker, was significantly elevated. Nuclear and perinuclear translocation of beta-catenin was also observed. We then cultured mouse vibrissa follicles. In the presence of BIO, the follicles could be maintained for at least 3 days without detectable regression of the hair bulbs. The morphology and ALP expression were well preserved. BIO successfully retrieved the expression of DP marker molecules, such as ALP and IGF-1 in cultured human DP cells, and maintained mouse hair bulbs. Thus, treatment with BIO may be useful to prepare DP cells with hair follicle-inducing activity.
Lithium will also inhibits Glycogen synthase kinase-3.
Inhibition of glycogen synthase kinase-3 enhances the expression of alkaline phosphatase and insulin-like growth factor-1 in human primary dermal papilla cell culture and maintains mouse hair bulbs in organ culture.
Yamauchi K, Kurosaka A.
Hair Clinic Reve-21 Corporation, 2-1-61 Shiromi, Chuo-ku, Osaka, 540-6122, Japan.
Dermal papilla (DP) at the hair follicle base is important for hair growth. Recent studies demonstrated that mouse vibrissa DP cells can be cultured in the presence of fibroblast growth factor-2 (FGF-2), but lose expression of versican and their follicle-inducing activity during the culture, and that activation of the Wnt signal, which is inhibited by glycogen synthase kinase-3 (GSK-3), in the DP cells promotes hair growth activity. We therefore investigated the influence of a GSK-3 inhibitor, (2'Z,3'E)-6-bromoindirubin-3'-oxime (BIO), on the growth of human DP cells and mouse vibrissa follicles in culture. We first demonstrated that, similarly to mouse DP cells, human DP cells were able to be cultured up to 15 passages in the presence of FGF-2, and lost the expression of alkaline phosphatase (ALP). When human DP cells later than ten passages were treated with BIO, the expression of ALP as well as insulin-like growth factor-1 (IGF-1), another DP marker, was significantly elevated. Nuclear and perinuclear translocation of beta-catenin was also observed. We then cultured mouse vibrissa follicles. In the presence of BIO, the follicles could be maintained for at least 3 days without detectable regression of the hair bulbs. The morphology and ALP expression were well preserved. BIO successfully retrieved the expression of DP marker molecules, such as ALP and IGF-1 in cultured human DP cells, and maintained mouse hair bulbs. Thus, treatment with BIO may be useful to prepare DP cells with hair follicle-inducing activity.
Lithium will also inhibits Glycogen synthase kinase-3.
Similar topics
» Endotoxin attenuates growth hormone-induced hepatic insulin-like growth factor I expression by inhibiting JAK2/STAT5 signal transduction and STAT5b DNA binding
» The expression of insulin-like growth factor 1 in follicular dermal papillae correlates with therapeutic efficacy of finasteride in androgenetic alopecia
» Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae
» Dietary isoflavone increases insulin-like growth factor-I production, thereby promoting hair growth in mice.
» Increasing Insulin Growth Factor-1 Levels
» The expression of insulin-like growth factor 1 in follicular dermal papillae correlates with therapeutic efficacy of finasteride in androgenetic alopecia
» Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae
» Dietary isoflavone increases insulin-like growth factor-I production, thereby promoting hair growth in mice.
» Increasing Insulin Growth Factor-1 Levels
Page 1 of 1
Permissions in this forum:
You cannot reply to topics in this forum
Yesterday at 9:11 am by CausticSymmetry
» ever hear of ayahuasca?
Yesterday at 7:52 am by Zaphod
» Roles of gut microbiota in androgenetic alopecia: insights from Mendelian randomization analysis
Sun Nov 24, 2024 4:22 pm by CausticSymmetry
» Urolithin A
Sun Nov 24, 2024 4:32 am by CausticSymmetry
» coconut oil a DHT inhibitor?
Sun Nov 24, 2024 3:21 am by shaftless
» Challenging Old Dogmas
Sun Nov 17, 2024 7:26 am by CausticSymmetry
» Is this beneficial bacterial strain the Pièce de résistance?
Fri Nov 15, 2024 10:27 am by CausticSymmetry
» Hyperthyroidism and iodine?
Thu Nov 14, 2024 9:48 am by CausticSymmetry
» pentadecanoic acid
Wed Nov 13, 2024 8:46 am by P88